AN INEQUALITY CONJECTURED BY HAJELA AND SEYMOUR ARISING IN COMBINATORIAL GEOMETRY

H. J. LANDAU, B. F. LOGAN and L. A. SHEPP

Received 31 October 1984

In a recent paper, D. Hajela and P. Seymour proved that for $0 \le b_1 \le b_2 \le 1$, $\alpha = (\log_2 3)/2$,

$$b_1^{\alpha}b_2^{\alpha}+(1-b_1)^{\alpha}b_2^{\alpha}+(1-b_1)^{\alpha}(1-b_2)^{\alpha}\geq 1$$
,

and drew from this inequality a variety of interesting results in combinatorial geometry. They also conjectured a generalization of the inequality to *n* variables, which they showed to imply a lower bound on the number of different sequences obtained when members of *n* sets of zero-one sequences are added to one another.

We prove their conjecture, not easy to verify even for small values of n, using complex-variable theory.

Introduction

In a recent paper [1], D. Hajela and P. Seymour derived a variety of interesting results in combinatorial geometry from the inequality

$$[b_1b_2]^{\alpha} + [(1-b_1)b_2]^{\alpha} + [(1-b_1)(1-b_2)]^{\alpha} \ge 1,$$

which they established for $\alpha = (\log_2 3)/2$ and $0 \le b_1 \le b_2 \le 1$. (This inequality also appeared in [3], with similar applications.) They then conjectured the truth of the following generalization: if $0 \le b_1 \le b_2 \le ... \le b_n \le 1$, $\alpha = n^{-1} \log_2(n+1)$, and

$$f_n(b_1, ..., b_n; \alpha) \equiv [b_1 b_2 ... b_n]^{\alpha} + [(1 - b_1) b_2 ... b_n]^{\alpha} + [(1 - b_1) (1 - b_2) b_3 ... b_n]^{\alpha} + ...$$

$$(1) \qquad ... + [(1 - b_1) (1 - b_2) ... (1 - b_n)]^{\alpha},$$

then

$$f_n \ge 1.$$

On the basis of (2), they concluded that if A_i is a set of vertices of the unit cube (i.e., of sequences whose entries are 0 or 1), $|A_i|$ denotes the cardinality of A_i , and $A_i + A_j$ is the set of all sums of an element from A_i and one from A_j , then

$$|A_1 + A_2 + \dots A_n| \ge (|A_1||A_2| \dots |A_n|)^{n-1\log_3(n+1)}.$$

But even apart from its applications, the conjecture, which was open already for n=3, presents an enticing analytic challenge. We establish it here in a slightly more

AMS subject elassification 1980: 26 D 15,

general form by proving that, for any $\alpha > 0$, f_n is minimized by choosing the b_i to be either 1/2 or 1. Specifically, we show that

(3)
$$\min_{\substack{0 \le b, \dots \le b, \le 1}} f_n(b_1, \dots, b_n; \alpha) = \min[1, (n+1)2^{-n\alpha}].$$

Since the inequality seems to be a matter of real variables, it is perhaps surprising that our proof is based on conformal mapping and Hadamard's three-circle theorem.

Acknowledgement. We are grateful to J. C. Lagarias for having brought this problem to our attention.

Discussion and Proofs

We begin by showing that the minimizing $\{b_i\}$ can be presumed to lie in half of the unit interval.

Lemma 1. Let $\alpha > 0$, $0 \le b_1 \le ... \le b_n \le 1$, and f_n be defined by (1). In the problem of minimizing f_n by choice of $\{b_i\}$, it is sufficient to consider $1/2 \le b_1 \le ... \le b_n \le 1$.

Proof. We will show that we do not increase the value of f_n if we replace $\{b_i\}$ by $\{b_i'\}$, obtained by reflecting those b_i in (0, 1/2) into (1/2, 1) by the map $b_i \rightarrow 1 - b_i$, and reordering the resulting sequence. We argue by induction. The assertion is evidently true when n=1. Assuming it to be true for n-1, we consider it for n. We may suppose that

$$(4) 1-b_n \leq b_1,$$

for otherwise we can reflect all the points $\{b_i\}$ by setting $b_i'' = 1 - b_{n+1-i}$; this transformation does not change the value of f_n , and produces (4). But when (4) holds, b_n remains the largest point even after each b_i in (0, 1/2) has been replaced by $1 - b_i$, and so the subsequent reordering does not affect it. Thus the reflection and reordering procedure operates only on b_1, \ldots, b_{n-1} . On writing

$$f_n = f_{n-1}b_n^{\alpha} + [(1-b_1) \dots (1-b_{n-1})]^{\alpha}(1-b_n)^{\alpha},$$

we see, by the induction hypothesis, that the reflection and reordering can only decrease f_{n-1} , and likewise only lower the distances $\{1-b_i\}$. Thus f_n is not increased, as was to be shown.

In view of Lemma 1 we henceforth assume that all the b_i lie in [1/2, 1], and we begin by considering the minimum of f_n as we vary the largest of the b_i over its permitted domain, keeping the remaining ones fixed. Accordingly, suppose that, for $k \ge 1$, the k last b_i coincide, $b_{n-k+1} = b_{n-k+2} = \dots = b_n = b$, and that we wish to minimize f_n for

$$(5) 1/2 \le b_{n-k} \le b \le 1.$$

We have

$$\frac{f_n(b_1, \ldots, b_{n-k}, b, \ldots, b; \alpha)}{(1-b_1)^{\alpha} \ldots (1-b_{n-k})^{\alpha}} = (1+A)b^{k\alpha} + (1-b)^{\alpha}b^{(k-1)\alpha} + \ldots + (1-b)^{k\alpha},$$

with

$$1+A=\frac{f_{n-k}(b_1,\ldots,b_{n-k};\alpha)}{(1-b_1)^{\alpha}\ldots(1-b_{n-k})^{\alpha}},$$

so that

$$(6) A \ge 0$$

Letting $b^{\alpha} = x$, $(1-b)^{\alpha} = y$, the problem becomes to minimize

$$g(x, y) \equiv (1+A)x^{k} + x^{k-1}y + ... + y^{k}$$

over the curve $x^{1/\alpha} + y^{1/\alpha} = 1$, in that part of the positive quadrant where

$$(7) b_{n-k}^{\alpha} \leq x \leq 1.$$

Since $1/2 \le b_{n-k}$, $y \le x$ in this region; let us denote by Δ the arc of $x^{1/\alpha} + y^{3/\alpha} = 1$ which lies in $y \le x$. We now take advantage of the homogeneity of g(x, y) by introducing the homothetic family of level curves

(8)
$$\Gamma_c = \{(x, y) | g(x, y) = c\},\$$

in terms of which the problem is to find the least c for which Γ_c intersects Δ in the range (7). To obtain more information about such intersections, we find the slope dy/dx on Γ_c by implicit differentiation

$$\frac{dy}{dx}\Big|_{(x,y)\in T_c} = -\frac{(1+A)kx^{k-1} + (k-1)x^{k-2}y + \dots + y^{k-1}}{x^{k-1} + 2yx^{k-2} + \dots + ky^{k-1}}\,,$$

and, parametrizing Γ_c by $\lambda = y/x$, we obtain

(9a)
$$\frac{dy}{dx}|_{(x,y)\in \Gamma_c} = -\frac{(1+A)k + (k-1)\lambda + \dots + \lambda^{k-1}}{1+2\lambda + \dots + k\lambda^{k-1}}.$$

Proceeding analogously with Δ yields

(9b)
$$\frac{dy}{dx}|_{(x,y)\in A} = -\frac{1}{\lambda^{\theta}}, \quad \theta = \alpha^{-1} - 1.$$

The relation between these slopes is given by the following result of independent interest.

Theorem 1. Suppose $0 \le a_0 \le a_1 \le ... \le a_n \ne 0$, and let

(10)
$$h_n(z) \equiv \frac{a_0 + a_1 z + \dots + a_n z^n}{a_n + a_{n-1} z + \dots + a_0 z^n}.$$

Then

- a) $h_n(z)$ is analytic in $|z| \le 1$;
- b) $h_n(z)$ takes $|z| \le 1$ into itself;
- c) $h_n(x) = \max_{|z| = x} |h_n(z)|, \ 0 \le x \le 1.$

Proof. We proceed by induction. Let C_n denote the collection of functions having the form (10), with some monotone sequence of coefficients $\{a_k\}$, $0 \le k \le n$. If $h_1 \in C_1$, $h_1(z)$ is the linear fractional transformation

(11)
$$h_1(z) = \frac{\mu + z}{1 + \mu z}, \quad 0 \le \mu = a_0/a_n \le 1.$$

Ignoring the trivial case $\mu=1$, this function is analytic in |z|<1, takes $|z|\leq 1$ conformally onto itself, and maps |z|=r<1 onto a circle with center on the positive real axis, so that the theorem is valid for $h_1(z)$. Now let us suppose that each $h\in C_n$ satisfies a), b), and c). The same is then true for zh(z), and, by the above-mentioned properties of (11), also for

$$\frac{\mu + zh(z)}{1 + \mu zh(z)},$$

with any $0 \le \mu \le 1$. We complete the induction by showing that any $h_{n+1} \in C_{n+1}$ can be so represented. For we can write h_{n+1} in the form (12) by setting

(13)
$$h(z) \equiv \frac{h_{n+1}(z) - \mu}{z(1 - \mu h_{n+1}(z))}.$$

If

$$h_{n+1}(z) = \frac{a_0 + a_1 z + \dots + a_{n+1} z^{n+1}}{a_{n+1} + a_n z + \dots + a_0 z^{n+1}},$$

with $\{a_i\}$ positive monotone sequence, we set

$$\mu = a_0/a_{n+1} \le 1,$$

and substitute into (13), obtaining

$$h(z) = \frac{b_0 + b_1 z + \dots + b_n z^n}{b_n + b_{n-1} z + \dots + b_n z^n},$$

with

$$b_i = a_{i+1}a_{n+1} - a_{n-i}a_0 \ge 0, \quad 0 \le i \le n.$$

From the monotonicity of $\{a_i\}$ it follows that $a_{i+2}-a_{i+1} \ge 0$, while $a_{n-i-1}-a_{n-i} \le 0$, hence

$$a_0(a_{n-i-1}-a_{n-i}) \leq a_{n+1}(a_{i+2}-a_{i+1}), -1 \leq i \leq n-1,$$

or, equivalently, $b_i \le b_{i+1}$, $0 \le i \le n-1$. Thus $h \in C_n$, and consequently, by means of the representation (12), C_{n+1} inherits from C_n properties a), b), and c), as was to be shown.

Corollary 1. With h_n as in (10), the equation

$$(14) h_n(x) = x^{\theta}$$

has at most one solution in $0 \le x < 1$ when $\theta > 0$, and $h_n(x) < x^{\theta}$ there when $\theta \le 0$.

Proof. By Theorem 1, $h_n(x)$ coincides with the maximum modulus of a function analytic in $|z| \le 1$, and so, by Hadamard's three-circle theorem [2, p. 173], $\log h_n(x)$ is an increasing convex function of $\log x$, $0 \le x \le 1$. Thereupon, letting $y = \log x$, and $f(y) \equiv \log h_n(x)$, (14) becomes

(15)
$$\frac{f(y)}{v} = \theta, \quad y \le 0,$$

with f(y) an increasing convex function of y. But f(0)=0, hence, for y<0,

$$\frac{f(y)}{y} = \frac{1}{y} \int_{0}^{y} f'(t) dt = -\frac{1}{-y} \int_{y}^{0} f'(t) dt,$$

with f'(t) positive, and increasing by the convexity of f. Thus the quotient represents an average of an increasing function, hence itself increases monotonically as a function of y (between 0 at $y=-\infty$ and f'(0) at y=0), so that (15) can have at most one solution for $\theta>0$. For $\theta \le 0$, $h_n(x)-x^{\theta}$ is an increasing function, vanishing at x=1, hence is negative in $0 \le x < 1$.

Corollary 2. With $0 < a_0 \le ... \le a_n$ and v > 0, the equation

(16)
$$\frac{a_0 + a_1 x + \dots + a_n x^n}{v + a_k + a_{k-1} x + \dots + a_0 x^n} = x^{\theta}$$

has exactly one solution in $0 \le x < 1$ when $\theta > 0$, and no solutions there when $\theta \le 0$.

Proof. Let $p(x) = a_0 + a_1 x + ... + a_n x^n$ and $q(x) = a_n + a_{n-1} x + ... + a_0 x^n$. Equivalently to (16), we consider $x^{-\theta}p(x) - q(x) = v$; this has one solution for each v > 0 if and only if $x^{-\theta}p(x) - q(x)$ is a monotonic function of x where it is positive. By Corollary 1, if $\theta \le 0$, $x^{-\theta}p(x) - q(x) < 0$ in $0 \le x < 1$, while if $\theta \ge n$, $x^{-\theta}p(x) - q(x)$ evidently decreases for x > 0. We therefore restrict to the remaining case, $0 < \theta < n$. Since $\theta > 0$ and $a_0 > 0$, $x^{-\theta}p(x) - q(x) \to \infty$ as $x \to 0 +$, and has at most a single zero in 0 < x < 1 by Corollary 1. Therefore $x^{-\theta}p(x) - q(x)$ is positive in a single interval $I \subset [0, 1]$, having x = 0 as its left endpoint. Moreover, since $(n - \theta) > 0$, $(1 - x^{n - \theta})$ is positive in 0 < x < 1, approaching 1 and 0 at the endpoints. Now in Corollary 1 let us replace a_n by $a_n + v$, noting that $a_{n-1} \le a_n + v$ since v > 0. We conclude that

$$\frac{p(x) + vx^n}{v + q(x)} = x^{\theta}$$

has at most one solution, $0 \le x \le 1$, or, equivalently, that the equation

(17)
$$x^{-\theta}p(x) - q(x) = v(1 - x^{n-\theta})$$

has at most one solution in $0 \le x < 1$. But this implies that $x^{-\theta}p(x) - q(x)$ is monotone for $x \in I$, else (since it approaches ∞ at x = 0) it must have a local minimum x_0 interior to I. Then, by choosing v > 0 so that (17) is satisfied at x_0 , we see that $v(1-x^{n-\theta})-[x^{-\theta}p(x)-q(x)]$ is positive in some neighborhood $x_0-\varepsilon < x < x_0$, but is negative near x = 0, hence must have a zero in addition to x_0 . This means that (17) has at least two solutions, a contradiction which establishes the desired monotonicity.

We can now return to the original problem and complete the argument.

Theorem 2. Let $\alpha > 0$, $0 \le b_1 \le ... \le b_n \le 1$, and f_n be defined by (1). Then $\min_{(b,\lambda)} f_n = \min \{1, (n+1)2^{-n\alpha}\}.$

Proof. We recall the earlier discussion, which converted the problem of minimizing f_n by choice of b to that of finding the least c for which the level cruve Γ_c of (8) inter-

sects Δ in the range (7). Assume now that $\alpha < 1$, and consider the level curve Γ_{1+A} , which passes through the point (1, 0), corresponding to $\lambda = y/x = 0$. By (9a), the slope of Γ_{1+A} at this point is -(1+A)k, while that of Δ is $-\infty$ by (9b), since $\theta > 0$. We assert that for $c \le 1 + A$, Γ_c crosses Δ at most once. For supposing otherwise, let λ_0 and λ_1 , with $0 < \lambda_0 < \lambda_1 < 1$, be the first two values of λ at which Γ_c and Δ cross. Since Γ_c lies below Δ at $\lambda=0$, Γ_c crosses Δ from below at λ_0 , hence the slope of Γ_c is lower than that of Δ at λ_0 (more precisely, at some point in an arbitrarily small neighborhood of λ_0). Analogously, Γ_c crosses Δ from above at λ_1 , so that Γ_c has larger slope than does Δ at λ_1 . Thus $s(\lambda) \equiv$ (slope of Γ_c) – (slope of Δ) changes sign at least twice in the range $0 < \lambda \le \lambda_1$, hence must have at least two zeros there. But on inserting (9a) and (9b) into the definition of $s(\lambda)$, we see by Corollary 2 that s vanishes only once, a contradiction. We conclude, firstly, that Γ_{1+A} crosses Δ at most once. Thus, letting (\bar{x}, \bar{y}) denote the point of intersection, it follows that $g(x, y) \ge$ $\cong 1 + A$ on the part of Δ where $x \cong \overline{x}$. Moreover, where $x < \overline{x}$, each point of Δ lies on a distinct Γ_c , hence g(x,y) increases monotonically in x on the part of Δ where $X < \overline{X}$.

Consequently, the minimum of g(x, y) over Δ in the range $b_{n-k}^{\alpha} \equiv x$ occurs at the right-hand end point x=1 if $b_{n-k}^{\alpha} \equiv \overline{x}$, and at the left-hand endpoint $x=b_{n-k}^{\alpha}$ otherwise; this corresponds to b=1 and $b=b_{n-k}$, respectively, in (5). In the former case,

$$f_n(b_1, ..., b_{n-k}, b, ..., b; \alpha) = f_{n-k}(b_1, ..., b_{n-k}; \alpha)$$

and we repeat the argument; in the latter case, the minimizing choice of b increases the number of coincident $\{b_i\}$ from the last k to the last k+1. Continuing in this way, we see that at the last stage all the remaining b_i coincide, and equal either 1/2 or 1. Thus the possible minima of f_n are restricted to be either 1 or $(k+1)2^{-k\alpha}$ for some $k \le n$. But the function $\log (t+1) - t\alpha \log 2$ is concave in t, with value 0 at t=0; it therefore necessarily decreases where it is negative. It follows that $(k+1)2^{-k\alpha}$ is a decreasing function of k wherever it lies below 1. Consequently, we have min $[1, (n+1)2^{-n\alpha}] \le \min[1, (k+1)2^{-k\alpha}]$, for each $k \le n$, and we conclude that, for $\alpha < 1$,

$$\min_{(h,1)} f_n = \min[1, (n+1)2^{-n\alpha}],$$

as was to be shown. For $\alpha \ge 1$, $\theta \ge 0$ in (9b). The argument just given then shows that Δ is below Γ_{1+A} , and that each point of Δ lies on a distinct Γ_c with $c \le 1+A$. Thus, on Δ , g(x, y) increases monotonically in x, so that g(x, y) is invariably minimized at the left-hand endpoint, and min $f_n = (n+1)2^{-n\alpha}$.

References

- [1] D. HAJELA and P. SEYMOUR, Counting points in hypercubes and convolution measure algebras, Combinatorica, 5 (1985), 205—214.
- [2] E. C. TITCHMARSH, The Theory of Functions, Oxford Univ. Press, 1939.
- [3] D. R. WOODALL, A theorem on cubes, Mathematika 24 (1977), 60--62.

H. J. Landau, B. F. Logan, L. A. Shepp

AT&T Bell Laboratories Murray Hill, NJ 07974, U.S.A.